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Abstract 
The paper is devoted to the development of software tools to support eye-tracking-

based research in an immersive virtual reality environment. Eye tracking is a popular 
technology for studying human behavior because it provides objective metrics to esti-
mate human perception strategies. The corresponding hardware evolves rapidly, and 
nowadays its ergonomics and accessibility enable to use this hardware in a wide range 
of research. Recently, eye tracking devices are combined with head-mounted virtual re-
ality displays, which allows the detecting of virtual objects the user is looking at. This, in 
turn, opens three new development roads. First, new interaction methods emerge, when 
the user can select objects with a gaze. Second, new ways of presenting virtual reality 
become possible, like, for example, foveated rendering (graphics rendering optimization 
that locates by eye tracker the zone the user is looking at, increases the image quality in 
that zone, and decreases the image quality in the peripheral vision). Third, new oppor-
tunities emerge to carry out the eye-tracking-based research of human behavior, where-
in the spectrum of possible experiments increases dramatically compared to what is 
achievable in the real world. In this paper, we focus on the third road. 

While there is a lot of mature software to support traditional eye-tracking-based ex-
periments, virtual reality brings new challenges not yet tackled by the existing means. 
The main challenge is a seamless integration of eye tracking analytics tools with virtual 
reality engines. In the present work, we address this challenge by proposing a flexible 
data mining and visual analytics pipeline based on the ontology-driven platform SciVi 
that deeply integrates with the virtual scene rendered by Unreal Engine and displayed 
by HTC Vive Pro Eye head-mounted display. 

We are interested in using eye tracking to study the reading process in immersive 
virtual reality. While the reading process in normal conditions is studied quite well, 
there is a lack of corresponding research related to the virtual reality environment. To 
the best of our knowledge, currently, just one attempt is reported in the literature, con-
sidering the reading of short phrases. In contrast, we plan to examine the reading of 
complete texts. The aim of the present work is to develop software tools needed to sup-
port the eye-tracking-based reading experiments in virtual reality and to obtain prelim-
inary results. 

To enable the visual mining of eye tracking data obtained in the reading experi-
ments, we propose a new modification of a well-known radial transition graph that al-
lows visually inspecting the scanpaths (sequences of eye fixations – moments when eyes 
are stationary – and interchanging saccades – moments when eyes rapidly move be-
tween viewing positions). Our modification is based on the SciVi::CGraph visualization 
module that performs well on handling large graphs and provides advanced search and 
filtering capabilities. The distinctiveness of our modification is the efficient tackling of 
the so-called “hairball problem” (problem of visual mess in the image that appears due 
to the big amount of data displayed at once) when inspecting fixations on the big num-

https://doi.org/10.26583/sv.13.2.04
mailto:kostya.ryabinin@gmail.com
mailto:belousovki@gmail.com


ber of interest areas (areas the gaze is tracked within). This tackling is leveraged by two 
main features. The first one is the concise yet comprehensive representation of interest 
areas as graph nodes color-coded according to the fixation count, while the dwell time is 
depicted by a radial histogram on top of the nodes. The second one is advanced filtering 
with the re-tracing function, which allows removing short intermediate fixations and 
merging corresponding saccades thereby enabling analysts to focus on the most signifi-
cant parts of the scanpath studied. 

The above features make it possible to study the reading process of the text on the 
word level (when each word is an individual area of interest). Currently, we implement-
ed and tested the setup for the experiments. This setup includes an appropriate virtual 
reality scene and a particular visual analytics pipeline. Next, we plan to extend our pipe-
line with other eye tracking metrics and conduct the reading experiments. 

Keywords: Visual Analytics, Data Mining, Eye Tracking, Virtual Reality, Circular 
Graph, Reading, Ontology Engineering, HTC Vive Pro Eye, Unreal Engine. 

 

1. Introduction 
Eye gaze tracking is a powerful technique to study human perception mecha-

nisms [1], as well as to provide a new channel of human-machine interaction [2, 3]. 
Emerging technical solutions, including affordable hardware like the products of To-
bii engineering company [4], and flexible software [5] bring eye tracking to a wide 
audience and leverage corresponding interdisciplinary research in many different 
application domains. This research focuses on three different aspects: 

1. Study of human cognitive processes and ways humans perceive the infor-
mation [1]. This research relates to Digital Humanities, involving knowledge of psy-
chology, neurobiology, medicine, and, if it comes to study reading-based processes, 
of linguistics. 

2. Study of ergonomics [6]. This research relies on the theory of design, involving 
marketing (when things like shopping or advertisements are studied) and artistic 
principles (when it comes to studying image-based content like, for example, graph-
ical user interfaces). 

3. Development of new human-machine interfaces [2, 3], in which eye gaze is in-
volved as an essential interaction element (for example, as an alternative to tradi-
tional mouse pointer). 

Each of the above branches of eye-tracking-based research requires adequate 
software tools to design and conduct appropriate experiments, collect the eye track-
ing data and analyze them. The eye-tracking-based research is based on analyzing 
specific metrics, which consider so-called fixations (moments when eyes are station-
ary), saccades (moments when eyes rapidly move between viewing positions), and 
scanpaths (sequences of eye gaze fixations and interconnecting saccades in chrono-
logical order) within areas of interest (AOIs, zones, in which the informant’s gaze is 
analyzed) [6, 7]. 

While traditionally eye tracking is performed in a physical environment (when 
the informant looks at real objects or at the pictures displayed on the monitor), the 
technical progress of the last few years enables combining tracking hardware with 
head-mounted displays (HMDs) thus bringing eye tracking in virtual reality (VR) [8]. 

Eye tracking introduces new capabilities in VR technologies [9], and VR allows 
new ways of conducting eye-tracking-based research [10, 11]. In particular, VR ena-
bles a lot of flexibility for Digital Humanities research, since it allows to create differ-
ent situations for informants, in which they should explore the space around, discov-



er information, make decisions, perform specific actions, and thereby evince differ-
ent socio-cognitive features [12]. 

 However, there is a lack of flexible data mining (DM) software to be used for an-
alyzing eye tracking data obtained from VR scenes. The goal of the present work is to 
adapt the DM platform SciVi [13] for performing visual analytics of gaze tracks col-
lected in a VR environment. This platform proved its efficiency and flexibility in our 
previous research [14] focused on the Digital Humanities sphere. Currently, we are 
interested in studying the process of reading inside the immersive VR. 

2. Key Contributions 
We propose an extensible ontology-driven visual analytics pipeline to study gaze 

tracks of users in VR scenes. The key contributions of the research conducted are the 
following: 

1. Seamless integration of and Unreal Engine-based VR scenes with ontology-
driven DM platform SciVi to collect and analyze gaze tracks. 

2. Visualization component based on circular graph for displaying and analyzing 
the scanpaths with multiple AOIs, supporting both real-time and recording-based 
operation modes.  

3. Setup of the experiment to study the reading process in immersive VR.  

3. Related Work 

3.1. Eye Tracking Research Guidelines 
Eye tracking is being used for research purposes for more than a hundred years, 

and in the past decade, the related hardware becomes much cheaper, easier to use, 
and therefore accessible for a wide number of research groups in different scientific 
domains [15]. Currently, results obtained across the scientific community allow to 
formulate methodological principles of eye-tracking-based research, building a set of 
tools and techniques on an appropriate theoretical basis. One of the most compre-
hensive guidebooks is written by K. Holmqvist et al. [15] covering theoretical aspects 
of eye tracking, its methodology, and corresponding measures.  

Z. Sharafi et al. created a detailed guide on eye tracking metrics [7] and on con-
ducting eye tracking studies in software engineering [16]. In these guides, the au-
thors define key points of tracking the eye gaze, processing the collected data, and 
performing corresponding visual analytics. 

T. Blascheck et al. made a vary elaborate review of visualization methods for eye 
tracking data [17], categorizing these methods by analytics purposes and providing 
references to the papers, which describe corresponding use cases. 

Eye tracking is extensively used to study the reading process [18], as one of the 
most fundamental cognitive processes of perceiving structured information. But 
while the reading in normal circumstances is studied well [19], reading in a VR envi-
ronment is covered quite poorly. Since the perception of VR often differs from the 
perception of the real world, one may expect some distinctiveness in the reading pro-
cess when the text is presented in the immersive virtual environment. In the litera-
ture, there is a gap in measuring this distinctiveness [20]. In the present work, we are 
interested to prepare for filling this gap by creating a visual analytics pipeline to col-
lect and study eye motions data in fully immersive VR. 

Reading pattern is represented by scanpath – sequence of eye gaze fixations and 
interconnecting saccades in chronological order [6, 7]. Both Z. Sharafi et al. [16] and 
T. Blascheck et al. [17] indicate circular transition diagrams and radial transition 



graphs as adequate visualization techniques to analyze scanpaths. A detailed descrip-
tion of these kinds of visualization is given by T. Blascheck et al. in [21, 22]. These 
visualization methods were successfully used by T. Blascheck et al. to study the eye 
movements while reading natural text and source code snippets [22], as well as by 
C. S. Peterson et al. in exploring the patterns of program source code reading by nov-
ice and expert developer [23]. 

There are indeed much more measures, metrics, and corresponding visualization 
methods to consider when going deeper in studying the process of reading, but in the 
present work, we decided to start with scanpath analysis to obtain the preliminary 
results. 

3.2. Eye Tracking in VR 

Traditionally, eye tracking in VR is used for rendering optimizations (so-called 
foveated rendering – the technique of increasing image quality in the area the user is 
looking at, while descearing image quality in the peripheral vision) and interactions, 
but currently, it goes far beyond these scopes [9]. VR allows to create a “highly con-
trolled environment [...] for a more in-depth amount of information to be gathered 
about the actions of a subject” [8]. This is why VR dramatically enlarges the spec-
trum of possible experiments related to human perception, and eye tracking brings 
precise measurements to these experiments allowing to use different metrics to in-
terpret experiments’ results. V. Clay et al. explored “the methods and tools which can 
be applied in the implementation of experiments using eye tracking in VR” and re-
ported their results in a guide-like research paper [8]. Along with this paper, 
A. McNamara presented a course about eye tracking in VR within a remit of SIG-
GRAPH Asia 2019; the course notes are available online [24]. 

Eye tracking process in the VR environment requires special processing algo-
rithms, which consider the informant’s ability to freely move across the virtual scene. 
In contrast to the traditional setups with the informant’s head fixed, movements in 
VR increase both degrees of freedom by exploring the virtual world, and the inform-
ant’s comfort. J. Llanes-Jurado et al. proposed a robust algorithm to distinct fixa-
tions and saccades, taking into account the varying head position of the informant 
[25]. The reference implementation of this algorithm is freely available on GitHub as 
an OpenSource project, so we decided to use it in our visual analytics pipeline as one 
of the eye tracking data preprocessing stages. 

In the last few years, research reports emerge on using VR as a versatile envi-
ronment for conducting different experiments, which would be complicated (or even 
impossible) to conduct in the real world. For example, L. M. Zhang et al. benefited 
the VR to recreate different streets and study the characteristics of informants’ street 
space perception [10]. D. Sonntag et al. introduced “a virtual reality environment 
that provides an immersive traffic simulation designed to observe behavior and mon-
itor relevant skills and abilities of pedestrians who may be at risk, such as elderly 
persons with cognitive impairments” [11]. In this research, VR allows to study risks 
in safe conditions. A. Skulmowski et. al. conducted VR-based experiments related to 
moral and social judgments based on the well-known trolley dilemma [12]. These ex-
periments would require a complex and very expensive setup involving human-like 
dolls and some technically complicated trolley park if conducted in reality, so this 
task can be considered impossible to fulfill outside of VR. 

Regarding the study of reading in VR, to the best of our knowledge, the only re-
search work is done by J. Mirault et al., but the aim of this work was to investigate 
the effects of transposed words in small sentences and not the reading of complete 



texts [20]. Thus we can argue, eye-tracking-based text reading study in immersive 
VR is a novel and significant task for Digital Humanities. 

3.3. Eye Tracking Hardware 

Nowadays, a wide variety of eye tracking hardware is accessible for research 
groups, including hardware that integrates eye tracker and HMD [26]. One of the 
most popular integrated devices is currently HTC Vive Pro Eye that was been re-
leased in 2019. According to the comparative study of N. Stein et al., its eye tracker is 
not the best one in terms of latency, being outperformed by Fove and Varjo [26]. The 
latency of HTC Vive Pro Eye is explained by the built-in low-pass filter applied to the 
eye tracking signal [26, 27], so this device cannot be used to study high-frequency 
saccade dynamics [27]. However, the spatial accuracy of HTC Vive Pro Eye eye track-
er is quite reasonable for eye-tracking-based research [27], and the corresponding 
HMD possesses high display resolution (1440⨉1600 pixels per eye, 90 Hz refresh 
rate, 110° field of view), enables precise head positioning (using dual-camera outer 
tracking), and overall ergonomics of this device is rated high [28]. Moreover, HTC 
provides a reliable SDK and the HMD is supported by the most popular VR engines 
(Unreal Engine and Unity) out of the box. This is why we decided to use 
HTC Vive Pro Eye in our research.  

3.4. Eye Tracking Software 
There is a lot of mature software to support eye-tracking-based research; the 

most popular tools are reviewed by B. Farnsworth [5] and Z. Sharafi [16]. Typical 
functionality of these tools comprises collecting the eye tracking data from the ap-
propriate hardware, classifying fixations and saccades, calculating statistical metrics 
of gaze tracks (like the average duration of fixations, the average frequency of sac-
cades, etc.), measuring eye pupil dilation and constriction, as well as providing dif-
ferent visualization means to display gaze tracks and corresponding evaluated data 
[5, 16, 17].  

However, when it comes to conducting eye-tracking-based research in VR, new 
challenges arise. To fully benefit from the opportunities of VR, eye tracking software 
has to consider deep integration with the virtual scene. For example, eye tracking da-
ta should be combined with head tracking data to allow the informant to freely navi-
gate in the virtual world. Also, there should be mechanisms of retrieving individual 
virtual objects the informant is looking at, along with the hitpoints of eye gaze ray 
with these objects. This kind of data can significantly increase the number of obser-
vations during the experiments.  

The traditional software provides no such functions yet, so the researchers have 
to build custom solutions out of the tools they can program themselves or find in the 
Internet. Most recent papers on the experiments involving eye tracking in VR provide 
descriptions of custom pipelines composed from loosely coupled heterogeneous 
third-party software tools with the data converted and transferred manually [20, 29]. 
Special IT skills are required to manage such pipelines, so higher-level software solu-
tions are demanded to make VR-based eye tracking accessible for the wider scientific 
community.  

One of the first attempts of creating this kind of solid software is proposed by 
J. Iacobi [30]. Iacobi’s system is based on Unity graphics rendering engine and pro-
vides analytical functions tightly bound to the 3D content that can be created using 
the Unity level designer. Although this system is very promising, for now, it is rather 



a laboratory prototype. Moreover, it is tied to Unity and cannot be ported to another 
engine, because it is written in C#. 

It can be concluded that the development of high-level flexible tools for designing 
and conducting eye-tracking-based experiments in immersive VR is an important 
and challenging task. Addressing this challenge, we propose an ontology-driven ex-
tensible software platform that enables seamless integration of DM tools with VR 
rendering engines and eye-tracking hardware. The distinctive features of our plat-
form are high-level adaptation means based on ontologies and automation of data 
flow. This platform provides automated integration mechanisms to combine different 
software modules (self-written and third-party ones) into the solid DM pipeline.  

4. Background 
Previously, we proposed tackling configurability problems of visual analytics 

software by the methods and means of ontology engineering [13]. The idea is to de-
scribe the functionality of a visual analytics system by ontologies, which enable flexi-
bility, extensibility, and semantic power. An ontology-driven visual analytics system 
can be adapted to solve new DM tasks by extending the system’s ontological 
knowledge base, while the codebase of the system’s core stays untouched. Built-in 
ontology reasoner traverses ontologies in the system’s knowledge base and dynami-
cally constructs a set of data processing and visualization operators described by 
these ontologies. Each operator’s description contains a declaration of the operator’s 
typed inputs, outputs, and settings, as well as a link to the corresponding implemen-
tation and information needed to execute the operator. Technically, operators play 
the role of micro-plugins for the visual analytics system, and the ontology acts as a 
semantic index for these plugins, defining the system’s functionality. 

We implemented the above principles in the ontology-driven client-server DM 
platform called SciVi (https://scivi.tools). The SciVi knowledge base contains ontolo-
gies of data types, filters, and visualization mechanisms, suitable to perform DM in 
the different application domains [31]. 

To enable efficient fine-tuning of SciVi for solving particular DM tasks, we pro-
pose describing concrete DM pipeline by data flow diagrams (DFDs) using a special 
high-level graphical editor. This approach proved its efficiency in different popular 
software like KNIME, Weka, and RapidMiner [32]. The distinctive feature of SciVi is 
that its operators’ palette used to build DFDs is automatically constructed according 
to the ontologies and therefore is easily extendable. 

Currently, the repository of SciVi plugins already contains a number of data pro-
cessing filters and visual analytics tools. One of them is a circular graph (called 
SciVi::CGraph) suitable to analyze interconnected categorized data, which often arise 
in Digital Humanities research [14]. 

In the present work, we extended SciVi with the operators needed to retrieve and 
analyze the eye tracking data collected by the head-mounted VR display. We im-
proved SciVi::CGraph to utilize it as a radial transition graph for scanpaths visualiza-
tion. We also created appropriate SciVi plugins to communicate with Unreal Engine 
that renders VR scenes and to receive gaze ray hitpoints with the regions of interest 
within these scenes. We utilize Unreal Engine to build the VR scenes because we al-
ready have some experience in using this software in Digital Humanities research 
[33]. In the future, we plan to support Unity as well.  

https://scivi.tools/


5. Proposed Solution 

5.1. Architecture 

The proposed software solution architecture is shown in Fig. 1. The central ele-
ment of this architecture is a VR engine that performs rendering of a scene, compos-
es stereo pair, passes it to the HMD, and collects gaze tracks from the eye tracking 
hardware. However, the key component is the SciVi platform that is responsible for 
preparing the scene data and analyzing the gaze tracks. First, it passes scene data to 
the VR engine and thereby controls, what the VR scene consists of. Second, it con-
stantly receives data packages containing gaze ray hitpoints with the VR objects the 
informant is looking at. Each package has its timestamp provided by the eye tracker, 
which allows precise analysis of the gaze tracking data, even if the connection suffers 
from network lags. 

 

 
Fig. 1. The architecture of the software platform for eye-tracking-based research 

in immersive VR (arrows depict data links) 
 
The communication of the VR engine with the VR hardware (eye tracker and 

HMD) is organized through the protocols defined by the VR engine: the modern VR 
engines (like Unreal Engine and Unity) are normally compatible with the modern VR 
headsets (like HTC Vive and Oculus Rift), so the communication relies on the drivers 
and SDKs provided by corresponding vendors. The communication of the SciVi plat-
form with the VR engine is initiated and controlled by SciVi. For this, a special light-
weight communication plugin should be installed in the VR engine. We propose us-
ing the WebSocket communication protocol because it enables low latency and fits 
well for bi-directional streaming of data. 

5.2. General Setup 
In our present research, we use Unreal Engine 4 to render VR scenes and 

HTC Vive Pro Eye to show the stereo-picture to the informants and simultaneously 
detect informants’ eye movements. To communicate with the eye tracker, the SRani-
pal SDK plugin for Unreal Engine is used. The rendering is performed on the com-
puter with the following characteristics. CPU: AMD Ryzen 9 3950X, 
RAM: DDR4 32Gb 3200 MHz, SSD: 512 Gb,  GPU: NVidia Titan RTX, 
OS: Windows 10. In the future, other software and hardware can be used as well, but 
according to our observations, the current setup performs quite well for the needs of 
our research. Let us denote the machine with Unreal Engine running as the VR serv-
er. 

VR server is placed in the laboratory room and connected to the laboratory local 
area network (LAN). HTC Vive Pro Eye is connected directly to the VR server. 

The SciVi server may run anywhere in the same LAN as the VR server, but in the 
current setup we start it up directly on the VR server. 



The experiments are directed through SciVi web interface from another comput-
er connected to the same LAN. It may be any device capable of running an HTML5-
compatible web browser. In the current setup, we use another laboratory desktop 
computer because it allows the operator to sit aside from the informant and thereby 
not distract him/her. For the informant, there is a reserved free space in the labora-
tory, where he/she can freely and safely move with the HMD on. 

Before the start of the experiment, the informant signs a form of informed con-
sent that states the data are collected anonymously and explains basic safety regula-
tions of the VR immersion process. After that, the eye tracker is being calibrated for 
the informant. The calibration process is performed with the built-in 
HTC Vive Pro Eye software tools (using the standard 9-point pattern). Then, the in-
formant has some free time in the VR scene to get used to the navigation and to 
check if he/she feels comfortable. Whenever ready, the informant clicks the button 
on the VR controller and the experiment begins. The total time of immersion should 
not exceed 15–20 minutes for one person to avoid fatigue. 

5.3. Visual Analytics Tools 

Beginning the eye-tracking-based experiments, we decided to start with the fol-
lowing two-staged data mining pipeline: 

1. Detection of saccades and fixations in the raw data stream obtained from the 
eye tracker. 

2. Visualizing the scanpath with the radial transition graph. 
To perform the first step, we added to SciVi the detection algorithm proposed by 

J. Llanes-Jurado et al. [25]. While the reference implementation of J. Llanes-
Jurado et al. is written in Python, to keep all the data mining process in the SciVi cli-
ent, we implemented this algorithm in JavaScript. 

The second step is achieved using the improved SciVi::CGraph [14] visualization 
module. According to Z. Sharafi et al. [16] and T. Blascheck et al. [17], circular transi-
tion diagrams and radial transition graphs suit well to visualize scanpaths.  

A circular transition diagram in a form proposed by T. Blascheck et al. [21] is 
shown in Fig. 2a. In this diagram, AOIs are depicted as circle segments. Each seg-
ment is color-coded according to the fixation count inside the corresponding AOI, 
and the size of the segment indicates the total dwell time within that AOI. Transitions 
between AOIs are represented by arrows, with the thickness displaying the number 
of transitions [17]. When the number of AOIs is small, this diagram clearly shows the 
distribution of fixation count and fixation time, as well as interchanging saccades. 
However, with the increase of the AOIs number, this representation form appears 
messy. 

Radial transition graphs in a form proposed by T. Blascheck et al. [22] are shown 
in Fig. 2b and Fig. 2c. The nodes placed in the circle represent color-coded AOIs, 
each one having incoming (white dot) and outgoing (black dot) points the arcs are 
connected to. Arcs represent saccades. In the graph in Fig. 2b, sector size represents 
total fixation duration for the corresponding AOI, so this graph variant has the same 
advantages and drawbacks as the circular transition diagram. In the graph in Fig. 2c, 
fixation duration is ignored and all the AOIs are drawn in the same size. This graph 
can show multiple AOIs at once, but the data about fixation time are lost. 

We propose a SciVi::CGraph-based modification of the radial transition graph, 
which is shown in Fig. 2d. This modification aims to combine the advantages of dif-
ferent forms of radial transition graphs and circular transition diagrams, alleviating 
their drawbacks. In our graph, nodes represent AOIs, colors correspond to the count 



of fixation, and yellow boxes form a histogram that shows fixation durations. In this 
way, hundreds of AOIs can be presented, and no data about fixations are trimmed. 
Edges represent saccades, whereby the arrow thickness corresponds to the number 
of saccades. Each edge contains a timestamp, and a special filter is implemented that 
allows defining a time range to show saccades for.  

Reusing SciVi::CGraph capabilities, edges and nodes can be filtered according to 
their weights (number of saccades and duration of fixations accordingly). To make 
sense of wight-based filtering, a re-tracing function is implemented, which recovers 
transitive paths after filtering: if the scanpath goes like AOI1 → AOI2 → AOI3 and 
AOI2 is filtered out, re-tracing adds a new edge AOI1 → AOI3, and the weight of this 
edge is a sum of edges AOI1 → AOI2 and AOI2 → AOI3. 
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Fig. 2. Different visualizations of scanpath: circular transition diagram (a) (re-
trieved from [17]); radial transition graph depicting fixation durations (b) (retrieved 

from [23]); radial transition graph depicting no fixation durations (c) (retrieved 
from [23]); our modification of radial transition graph based on SciVi::CGraph ren-

dered in SciVi (d) 
 

Compared to the well-known form of radial transition graph, our modification al-
lows analyzing a relatively large number of AOIs in a single view, which is important 



by studying the text reading on the word-scale level. It must be noted, that 
SciVi::CGraph already contains a lot of interactive functions (advanced search and 
filtering, highlighting on hover, zoom and pan, etc.) [34] to tackle the so-called 
“hairball problem” [35] (the problem of visual mess in the picture). These functions 
allow analyzing eye tracking data of reading relatively large texts (several sentences 
long, see Section 6.3 for details) on the relatively large timescales (working with the 
text for several minutes). 

6. Setup to Study Reading in Virtual Reality 

6.1. Virtual Reality Scene 
To study reading in VR, we designed a simple VR scene in the game level editor 

of the Unreal Engine. In this scene, there is an open space and a whiteboard model in 
the middle. The whiteboard model was taken from the Blendswap 3D model storage 
(http://www.blendswap.com/blends/view/85304). The author of this model is the 
Blendswap user with the nickname gadiskhatulistiwa, who shared this model under 
the terms of the Creative Commons Attribution 3.0 license. 

When the experiment begins, the informant’s virtual avatar is placed in front of 
the whiteboard, and the whiteboard is empty. The informant can freely move in the 
scene’s open space to get used to the VR navigation. Whenever ready to read, the in-
formant clicks the button on the VR controller. The predefined text appears on the 
whiteboard and the recording of the informant’s gaze direction starts. 

The rendering result of the VR scene is shown in Fig. 3. The text is represented as 
a 2D texture generated by SciVi (see Section 6.3 for details) and mapped to the plain 
object with a 16:9 aspect ratio. The plain object is placed on top of the whiteboard. 
The texture is not mapped to the whiteboard itself to make it easier to hit-test the in-
formant’s gaze ray with the object of interest. 

 

 
Fig. 3. VR scene rendered by Unreal Engine 

http://www.blendswap.com/blends/view/85304


6.2. Visual Analytics Pipeline 

The visual analytics pipeline composed as a DFD in the SciVi environment is 
shown in Fig. 4. 

 

 
Fig. 4. SciVi DFD representing the visual analytics pipeline of eye tracking data 

 
Each DFD node represents an individual DM operator and has its ontological de-

scription stored in the SciVi knowledge base. This description contains a list of the 
operator’s inputs, outputs, and settings along with the link to the function or library 
implementing this operator. The details on how ontologies are utilized to drive the 
data processing and visualization can be found in our previous reports [13, 14, 31]. 

“Text to Picture” operator creates a raster image according to the text provided in 
the settings (the settings are not displayed on the DFD nodes because there is indi-
vidual settings panel in the SciVi graphical user interface). “VR Board” operator 
transmits the input picture to the VR scene as a texture, where it is mapped to the 
plain object on top of the whiteboard. “Segment Words” operator utilizes a computer 
vision approach to find bounding rects for the words the input text consists of (see 
Section 6.3 for details). “Eye Tracker” operator receives gaze direction data and cor-
responding timestamps from the VR scene. “Detect Eye Movements” operator classi-
fies eye tracking data to saccades and fixations (utilizing the algorithm described in 
[25], see Section 6.3 for details). “Build Scanpath” operator combines the eye track-
ing data with the AOIs data to compose a scanpath. This scanpath is then visualized 
using a “Circular Graph”. 

It must be noted, that the DFD shown in Fig. 4 defines real-time data processing 
and displaying, but the “Circular Graph” visualizer allows to save the data being col-
lected and reload them afterwards for offline analysis. 

The proposed approach of building analytics pipelines is flexible enough to han-
dle different eye tracking DM cases. If needed, new operators can be easily added by 
extending SciVi ontologies, introducing new functionality to solve specific visual ana-
lytics tasks. 



6.3. Text Preparation 

To study reading in VR, we take texts containing several sentences, with a total 
length of no more than 200 words. Currently, we consider texts in Russian, and the 
informants are native Russian speakers. The texts contain neutral encyclopedic in-
formation about different phenomena. The example of considered texts is given in 
Fig. 3. In this example, a short description of the “shaka sign” (gesture of friendly in-
tent) is given.  

The texts are rasterized using HTML5 canvas API to the image of size 
1920⨉1080, with Consolas font and justified alignment. On the one hand, this image 
is transmitted to the VR scene and used as a texture. On the other hand, this image is 
segmented to extract the precise bounding rects for individual words. The segmenta-
tion is based on the horizontal and vertical intensity histograms as proposed in [36]. 
The horizontal intensity histogram allows to find the bounds of lines, and then, for 
each line, the vertical intensity histogram allows to find borders of words. The seg-
mentation of the first line of the text about the shaka sign is shown in Fig. 5. The 
words’ bounding rects are highlighted yellow; the dash is excluded because it is not a 
word. 

 

 
Fig. 5. Text segmentation based on the horizontal and vertical  

intensity histograms 
 
The gaze ray obtained from the eye tracker is hit-tested with the plain object ren-

dered with the texture containing the text. SRanipal SDK plugin provides a gaze ray 
hitpoint with the given object in the global scene coordinates. These data are trans-
mitted to SciVi via WebSocket and received with the “Eye Tracker” operator. In the 
“Build Scanpath” SciVi operator, this point is then mapped to the texture space of the 
plain object and hit-tested with the word rects to find, which word the informant is 
looking at. The hit-testing results are assembled into the scanpath and visualized 
with the “Circular Graph” renderer in SciVi. 



7. Conclusion 
In the present work, we propose the visual analytics pipeline to perform a DM of 

eye tracking data in a VR environment. In particular, we discuss the setup to study 
the reading process of small texts (up to 200 words) in VR. To the best of our 
knowledge, this is a second attempt to apply eye tracking technique for studying the 
reading in VR. The first one has been taken by J. Mirault et al. as reported in [20], 
but in that work, small sentences are considered. In contrast, we are focusing on the 
complete texts. 

We propose using the following hardware and software in the eye-tracking-based 
experiments: 

1. HTC Vive Pro Eye VR HMD with the built-in eye tracker to present the VR 
scene to the informant and simultaneously capture the informant’s gaze direction. 

2. Unreal Engine to render the immersive VR environment. This engine supports 
HTC Vive HMD out of the box; to communicate with the eye tracker, the SRanipal 
SDK plugin is used. In the future, we plan to consider integration with the Unity en-
gine as well. 

3. SciVi DM platform to preprocess, analyze and store the data obtained from the 
eye tracker. 

We propose to visualize the scanpaths using a circular graph leveraged by the 
SciVi::CGraph module. The general idea is similar to the one proposed by 
T. Blascheck et al. in [21, 22]. The distinctive features of our visualization tool are the 
following: 

1. AOIs are displayed as small nodes on the circle, color-coded according to the 
fixation count, and the total fixation time per AOI is displayed as a radial histogram 
on top of the nodes. 

2. The graph is supplemented with the advanced search and filtering capabilities, 
as well as the re-tracing functionality, which in combination allow to focus on the 
most significant parts of the gaze tracks being studied. 

Both of the above features tackle a hairball problem when a lot of AOIs are being 
displayed at the same time. This enables to study the reading process of the text on 
the word level (when each word is an individual AOI). 

Currently, we use the circular graph to visually analyze the eye tracking data. 
This graph allows us to estimate scanpaths in the text, as well as numbers of fixations 
and dwell time on each word in the text. In the future, we plan to adopt more differ-
ent metrics, similar to the ones used in [37, 38]. 

Although the actual eye-tracking-based experiments conducted are rather pre-
liminary, the main result of the reported work is the flexible setup that involves on-
tology-driven DM tools of the SciVi platform for processing and analyzing the eye 
tracking data collected in VR. The SciVi DM platform and all its plugins described in 
the paper are OpenSource projects available on GitHub: https://github.com/scivi-
tools/. In particular, the ontologies (stored in the ONTOLIS ONT format [39]) de-
scribing the eye-tracking-related operators and renderers can be found under 
https://github.com/scivi-tools/scivi.web/tree/master/kb/eye.  
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