
Scientific Visualization, 2021, volume 13, number 2, pages 50 - 66, DOI: 10.26583/sv.13.2.04

Visual Analytics of Gaze Tracks in Virtual

Reality Environment

K.V. Ryabinin1,А,В, K.I. Belousov2,А,В

A Saint Petersburg State University, Saint Petersburg, Russia

B Perm State University, Perm, Russia

1 ORCID: 0000-0002-8353-7641, kostya.ryabinin@gmail.com
2 ORCID: 0000-0003-4447-1288, belousovki@gmail.com

Abstract
The paper is devoted to the development of software tools to support eye-tracking-

based research in an immersive virtual reality environment. Eye tracking is a popular
technology for studying human behavior because it provides objective metrics to esti-
mate human perception strategies. The corresponding hardware evolves rapidly, and
nowadays its ergonomics and accessibility enable to use this hardware in a wide range
of research. Recently, eye tracking devices are combined with head-mounted virtual re-
ality displays, which allows the detecting of virtual objects the user is looking at. This, in
turn, opens three new development roads. First, new interaction methods emerge, when
the user can select objects with a gaze. Second, new ways of presenting virtual reality
become possible, like, for example, foveated rendering (graphics rendering optimization
that locates by eye tracker the zone the user is looking at, increases the image quality in
that zone, and decreases the image quality in the peripheral vision). Third, new oppor-
tunities emerge to carry out the eye-tracking-based research of human behavior, where-
in the spectrum of possible experiments increases dramatically compared to what is
achievable in the real world. In this paper, we focus on the third road.

While there is a lot of mature software to support traditional eye-tracking-based ex-
periments, virtual reality brings new challenges not yet tackled by the existing means.
The main challenge is a seamless integration of eye tracking analytics tools with virtual
reality engines. In the present work, we address this challenge by proposing a flexible
data mining and visual analytics pipeline based on the ontology-driven platform SciVi
that deeply integrates with the virtual scene rendered by Unreal Engine and displayed
by HTC Vive Pro Eye head-mounted display.

We are interested in using eye tracking to study the reading process in immersive
virtual reality. While the reading process in normal conditions is studied quite well,
there is a lack of corresponding research related to the virtual reality environment. To
the best of our knowledge, currently, just one attempt is reported in the literature, con-
sidering the reading of short phrases. In contrast, we plan to examine the reading of
complete texts. The aim of the present work is to develop software tools needed to sup-
port the eye-tracking-based reading experiments in virtual reality and to obtain prelim-
inary results.

To enable the visual mining of eye tracking data obtained in the reading experi-
ments, we propose a new modification of a well-known radial transition graph that al-
lows visually inspecting the scanpaths (sequences of eye fixations – moments when eyes
are stationary – and interchanging saccades – moments when eyes rapidly move be-
tween viewing positions). Our modification is based on the SciVi::CGraph visualization
module that performs well on handling large graphs and provides advanced search and
filtering capabilities. The distinctiveness of our modification is the efficient tackling of
the so-called “hairball problem” (problem of visual mess in the image that appears due
to the big amount of data displayed at once) when inspecting fixations on the big num-

https://doi.org/10.26583/sv.13.2.04
mailto:kostya.ryabinin@gmail.com
mailto:belousovki@gmail.com

ber of interest areas (areas the gaze is tracked within). This tackling is leveraged by two
main features. The first one is the concise yet comprehensive representation of interest
areas as graph nodes color-coded according to the fixation count, while the dwell time is
depicted by a radial histogram on top of the nodes. The second one is advanced filtering
with the re-tracing function, which allows removing short intermediate fixations and
merging corresponding saccades thereby enabling analysts to focus on the most signifi-
cant parts of the scanpath studied.

The above features make it possible to study the reading process of the text on the
word level (when each word is an individual area of interest). Currently, we implement-
ed and tested the setup for the experiments. This setup includes an appropriate virtual
reality scene and a particular visual analytics pipeline. Next, we plan to extend our pipe-
line with other eye tracking metrics and conduct the reading experiments.

Keywords: Visual Analytics, Data Mining, Eye Tracking, Virtual Reality, Circular
Graph, Reading, Ontology Engineering, HTC Vive Pro Eye, Unreal Engine.

1. Introduction
Eye gaze tracking is a powerful technique to study human perception mecha-

nisms [1], as well as to provide a new channel of human-machine interaction [2, 3].
Emerging technical solutions, including affordable hardware like the products of To-
bii engineering company [4], and flexible software [5] bring eye tracking to a wide
audience and leverage corresponding interdisciplinary research in many different
application domains. This research focuses on three different aspects:

1. Study of human cognitive processes and ways humans perceive the infor-
mation [1]. This research relates to Digital Humanities, involving knowledge of psy-
chology, neurobiology, medicine, and, if it comes to study reading-based processes,
of linguistics.

2. Study of ergonomics [6]. This research relies on the theory of design, involving
marketing (when things like shopping or advertisements are studied) and artistic
principles (when it comes to studying image-based content like, for example, graph-
ical user interfaces).

3. Development of new human-machine interfaces [2, 3], in which eye gaze is in-
volved as an essential interaction element (for example, as an alternative to tradi-
tional mouse pointer).

Each of the above branches of eye-tracking-based research requires adequate
software tools to design and conduct appropriate experiments, collect the eye track-
ing data and analyze them. The eye-tracking-based research is based on analyzing
specific metrics, which consider so-called fixations (moments when eyes are station-
ary), saccades (moments when eyes rapidly move between viewing positions), and
scanpaths (sequences of eye gaze fixations and interconnecting saccades in chrono-
logical order) within areas of interest (AOIs, zones, in which the informant’s gaze is
analyzed) [6, 7].

While traditionally eye tracking is performed in a physical environment (when
the informant looks at real objects or at the pictures displayed on the monitor), the
technical progress of the last few years enables combining tracking hardware with
head-mounted displays (HMDs) thus bringing eye tracking in virtual reality (VR) [8].

Eye tracking introduces new capabilities in VR technologies [9], and VR allows
new ways of conducting eye-tracking-based research [10, 11]. In particular, VR ena-
bles a lot of flexibility for Digital Humanities research, since it allows to create differ-
ent situations for informants, in which they should explore the space around, discov-

er information, make decisions, perform specific actions, and thereby evince differ-
ent socio-cognitive features [12].

 However, there is a lack of flexible data mining (DM) software to be used for an-
alyzing eye tracking data obtained from VR scenes. The goal of the present work is to
adapt the DM platform SciVi [13] for performing visual analytics of gaze tracks col-
lected in a VR environment. This platform proved its efficiency and flexibility in our
previous research [14] focused on the Digital Humanities sphere. Currently, we are
interested in studying the process of reading inside the immersive VR.

2. Key Contributions
We propose an extensible ontology-driven visual analytics pipeline to study gaze

tracks of users in VR scenes. The key contributions of the research conducted are the
following:

1. Seamless integration of and Unreal Engine-based VR scenes with ontology-
driven DM platform SciVi to collect and analyze gaze tracks.

2. Visualization component based on circular graph for displaying and analyzing
the scanpaths with multiple AOIs, supporting both real-time and recording-based
operation modes.

3. Setup of the experiment to study the reading process in immersive VR.

3. Related Work

3.1. Eye Tracking Research Guidelines
Eye tracking is being used for research purposes for more than a hundred years,

and in the past decade, the related hardware becomes much cheaper, easier to use,
and therefore accessible for a wide number of research groups in different scientific
domains [15]. Currently, results obtained across the scientific community allow to
formulate methodological principles of eye-tracking-based research, building a set of
tools and techniques on an appropriate theoretical basis. One of the most compre-
hensive guidebooks is written by K. Holmqvist et al. [15] covering theoretical aspects
of eye tracking, its methodology, and corresponding measures.

Z. Sharafi et al. created a detailed guide on eye tracking metrics [7] and on con-
ducting eye tracking studies in software engineering [16]. In these guides, the au-
thors define key points of tracking the eye gaze, processing the collected data, and
performing corresponding visual analytics.

T. Blascheck et al. made a vary elaborate review of visualization methods for eye
tracking data [17], categorizing these methods by analytics purposes and providing
references to the papers, which describe corresponding use cases.

Eye tracking is extensively used to study the reading process [18], as one of the
most fundamental cognitive processes of perceiving structured information. But
while the reading in normal circumstances is studied well [19], reading in a VR envi-
ronment is covered quite poorly. Since the perception of VR often differs from the
perception of the real world, one may expect some distinctiveness in the reading pro-
cess when the text is presented in the immersive virtual environment. In the litera-
ture, there is a gap in measuring this distinctiveness [20]. In the present work, we are
interested to prepare for filling this gap by creating a visual analytics pipeline to col-
lect and study eye motions data in fully immersive VR.

Reading pattern is represented by scanpath – sequence of eye gaze fixations and
interconnecting saccades in chronological order [6, 7]. Both Z. Sharafi et al. [16] and
T. Blascheck et al. [17] indicate circular transition diagrams and radial transition

graphs as adequate visualization techniques to analyze scanpaths. A detailed descrip-
tion of these kinds of visualization is given by T. Blascheck et al. in [21, 22]. These
visualization methods were successfully used by T. Blascheck et al. to study the eye
movements while reading natural text and source code snippets [22], as well as by
C. S. Peterson et al. in exploring the patterns of program source code reading by nov-
ice and expert developer [23].

There are indeed much more measures, metrics, and corresponding visualization
methods to consider when going deeper in studying the process of reading, but in the
present work, we decided to start with scanpath analysis to obtain the preliminary
results.

3.2. Eye Tracking in VR

Traditionally, eye tracking in VR is used for rendering optimizations (so-called
foveated rendering – the technique of increasing image quality in the area the user is
looking at, while descearing image quality in the peripheral vision) and interactions,
but currently, it goes far beyond these scopes [9]. VR allows to create a “highly con-
trolled environment [...] for a more in-depth amount of information to be gathered
about the actions of a subject” [8]. This is why VR dramatically enlarges the spec-
trum of possible experiments related to human perception, and eye tracking brings
precise measurements to these experiments allowing to use different metrics to in-
terpret experiments’ results. V. Clay et al. explored “the methods and tools which can
be applied in the implementation of experiments using eye tracking in VR” and re-
ported their results in a guide-like research paper [8]. Along with this paper,
A. McNamara presented a course about eye tracking in VR within a remit of SIG-
GRAPH Asia 2019; the course notes are available online [24].

Eye tracking process in the VR environment requires special processing algo-
rithms, which consider the informant’s ability to freely move across the virtual scene.
In contrast to the traditional setups with the informant’s head fixed, movements in
VR increase both degrees of freedom by exploring the virtual world, and the inform-
ant’s comfort. J. Llanes-Jurado et al. proposed a robust algorithm to distinct fixa-
tions and saccades, taking into account the varying head position of the informant
[25]. The reference implementation of this algorithm is freely available on GitHub as
an OpenSource project, so we decided to use it in our visual analytics pipeline as one
of the eye tracking data preprocessing stages.

In the last few years, research reports emerge on using VR as a versatile envi-
ronment for conducting different experiments, which would be complicated (or even
impossible) to conduct in the real world. For example, L. M. Zhang et al. benefited
the VR to recreate different streets and study the characteristics of informants’ street
space perception [10]. D. Sonntag et al. introduced “a virtual reality environment
that provides an immersive traffic simulation designed to observe behavior and mon-
itor relevant skills and abilities of pedestrians who may be at risk, such as elderly
persons with cognitive impairments” [11]. In this research, VR allows to study risks
in safe conditions. A. Skulmowski et. al. conducted VR-based experiments related to
moral and social judgments based on the well-known trolley dilemma [12]. These ex-
periments would require a complex and very expensive setup involving human-like
dolls and some technically complicated trolley park if conducted in reality, so this
task can be considered impossible to fulfill outside of VR.

Regarding the study of reading in VR, to the best of our knowledge, the only re-
search work is done by J. Mirault et al., but the aim of this work was to investigate
the effects of transposed words in small sentences and not the reading of complete

texts [20]. Thus we can argue, eye-tracking-based text reading study in immersive
VR is a novel and significant task for Digital Humanities.

3.3. Eye Tracking Hardware

Nowadays, a wide variety of eye tracking hardware is accessible for research
groups, including hardware that integrates eye tracker and HMD [26]. One of the
most popular integrated devices is currently HTC Vive Pro Eye that was been re-
leased in 2019. According to the comparative study of N. Stein et al., its eye tracker is
not the best one in terms of latency, being outperformed by Fove and Varjo [26]. The
latency of HTC Vive Pro Eye is explained by the built-in low-pass filter applied to the
eye tracking signal [26, 27], so this device cannot be used to study high-frequency
saccade dynamics [27]. However, the spatial accuracy of HTC Vive Pro Eye eye track-
er is quite reasonable for eye-tracking-based research [27], and the corresponding
HMD possesses high display resolution (1440⨉1600 pixels per eye, 90 Hz refresh
rate, 110° field of view), enables precise head positioning (using dual-camera outer
tracking), and overall ergonomics of this device is rated high [28]. Moreover, HTC
provides a reliable SDK and the HMD is supported by the most popular VR engines
(Unreal Engine and Unity) out of the box. This is why we decided to use
HTC Vive Pro Eye in our research.

3.4. Eye Tracking Software
There is a lot of mature software to support eye-tracking-based research; the

most popular tools are reviewed by B. Farnsworth [5] and Z. Sharafi [16]. Typical
functionality of these tools comprises collecting the eye tracking data from the ap-
propriate hardware, classifying fixations and saccades, calculating statistical metrics
of gaze tracks (like the average duration of fixations, the average frequency of sac-
cades, etc.), measuring eye pupil dilation and constriction, as well as providing dif-
ferent visualization means to display gaze tracks and corresponding evaluated data
[5, 16, 17].

However, when it comes to conducting eye-tracking-based research in VR, new
challenges arise. To fully benefit from the opportunities of VR, eye tracking software
has to consider deep integration with the virtual scene. For example, eye tracking da-
ta should be combined with head tracking data to allow the informant to freely navi-
gate in the virtual world. Also, there should be mechanisms of retrieving individual
virtual objects the informant is looking at, along with the hitpoints of eye gaze ray
with these objects. This kind of data can significantly increase the number of obser-
vations during the experiments.

The traditional software provides no such functions yet, so the researchers have
to build custom solutions out of the tools they can program themselves or find in the
Internet. Most recent papers on the experiments involving eye tracking in VR provide
descriptions of custom pipelines composed from loosely coupled heterogeneous
third-party software tools with the data converted and transferred manually [20, 29].
Special IT skills are required to manage such pipelines, so higher-level software solu-
tions are demanded to make VR-based eye tracking accessible for the wider scientific
community.

One of the first attempts of creating this kind of solid software is proposed by
J. Iacobi [30]. Iacobi’s system is based on Unity graphics rendering engine and pro-
vides analytical functions tightly bound to the 3D content that can be created using
the Unity level designer. Although this system is very promising, for now, it is rather

a laboratory prototype. Moreover, it is tied to Unity and cannot be ported to another
engine, because it is written in C#.

It can be concluded that the development of high-level flexible tools for designing
and conducting eye-tracking-based experiments in immersive VR is an important
and challenging task. Addressing this challenge, we propose an ontology-driven ex-
tensible software platform that enables seamless integration of DM tools with VR
rendering engines and eye-tracking hardware. The distinctive features of our plat-
form are high-level adaptation means based on ontologies and automation of data
flow. This platform provides automated integration mechanisms to combine different
software modules (self-written and third-party ones) into the solid DM pipeline.

4. Background
Previously, we proposed tackling configurability problems of visual analytics

software by the methods and means of ontology engineering [13]. The idea is to de-
scribe the functionality of a visual analytics system by ontologies, which enable flexi-
bility, extensibility, and semantic power. An ontology-driven visual analytics system
can be adapted to solve new DM tasks by extending the system’s ontological
knowledge base, while the codebase of the system’s core stays untouched. Built-in
ontology reasoner traverses ontologies in the system’s knowledge base and dynami-
cally constructs a set of data processing and visualization operators described by
these ontologies. Each operator’s description contains a declaration of the operator’s
typed inputs, outputs, and settings, as well as a link to the corresponding implemen-
tation and information needed to execute the operator. Technically, operators play
the role of micro-plugins for the visual analytics system, and the ontology acts as a
semantic index for these plugins, defining the system’s functionality.

We implemented the above principles in the ontology-driven client-server DM
platform called SciVi (https://scivi.tools). The SciVi knowledge base contains ontolo-
gies of data types, filters, and visualization mechanisms, suitable to perform DM in
the different application domains [31].

To enable efficient fine-tuning of SciVi for solving particular DM tasks, we pro-
pose describing concrete DM pipeline by data flow diagrams (DFDs) using a special
high-level graphical editor. This approach proved its efficiency in different popular
software like KNIME, Weka, and RapidMiner [32]. The distinctive feature of SciVi is
that its operators’ palette used to build DFDs is automatically constructed according
to the ontologies and therefore is easily extendable.

Currently, the repository of SciVi plugins already contains a number of data pro-
cessing filters and visual analytics tools. One of them is a circular graph (called
SciVi::CGraph) suitable to analyze interconnected categorized data, which often arise
in Digital Humanities research [14].

In the present work, we extended SciVi with the operators needed to retrieve and
analyze the eye tracking data collected by the head-mounted VR display. We im-
proved SciVi::CGraph to utilize it as a radial transition graph for scanpaths visualiza-
tion. We also created appropriate SciVi plugins to communicate with Unreal Engine
that renders VR scenes and to receive gaze ray hitpoints with the regions of interest
within these scenes. We utilize Unreal Engine to build the VR scenes because we al-
ready have some experience in using this software in Digital Humanities research
[33]. In the future, we plan to support Unity as well.

https://scivi.tools/

5. Proposed Solution

5.1. Architecture

The proposed software solution architecture is shown in Fig. 1. The central ele-
ment of this architecture is a VR engine that performs rendering of a scene, compos-
es stereo pair, passes it to the HMD, and collects gaze tracks from the eye tracking
hardware. However, the key component is the SciVi platform that is responsible for
preparing the scene data and analyzing the gaze tracks. First, it passes scene data to
the VR engine and thereby controls, what the VR scene consists of. Second, it con-
stantly receives data packages containing gaze ray hitpoints with the VR objects the
informant is looking at. Each package has its timestamp provided by the eye tracker,
which allows precise analysis of the gaze tracking data, even if the connection suffers
from network lags.

Fig. 1. The architecture of the software platform for eye-tracking-based research

in immersive VR (arrows depict data links)

The communication of the VR engine with the VR hardware (eye tracker and

HMD) is organized through the protocols defined by the VR engine: the modern VR
engines (like Unreal Engine and Unity) are normally compatible with the modern VR
headsets (like HTC Vive and Oculus Rift), so the communication relies on the drivers
and SDKs provided by corresponding vendors. The communication of the SciVi plat-
form with the VR engine is initiated and controlled by SciVi. For this, a special light-
weight communication plugin should be installed in the VR engine. We propose us-
ing the WebSocket communication protocol because it enables low latency and fits
well for bi-directional streaming of data.

5.2. General Setup
In our present research, we use Unreal Engine 4 to render VR scenes and

HTC Vive Pro Eye to show the stereo-picture to the informants and simultaneously
detect informants’ eye movements. To communicate with the eye tracker, the SRani-
pal SDK plugin for Unreal Engine is used. The rendering is performed on the com-
puter with the following characteristics. CPU: AMD Ryzen 9 3950X,
RAM: DDR4 32Gb 3200 MHz, SSD: 512 Gb, GPU: NVidia Titan RTX,
OS: Windows 10. In the future, other software and hardware can be used as well, but
according to our observations, the current setup performs quite well for the needs of
our research. Let us denote the machine with Unreal Engine running as the VR serv-
er.

VR server is placed in the laboratory room and connected to the laboratory local
area network (LAN). HTC Vive Pro Eye is connected directly to the VR server.

The SciVi server may run anywhere in the same LAN as the VR server, but in the
current setup we start it up directly on the VR server.

The experiments are directed through SciVi web interface from another comput-
er connected to the same LAN. It may be any device capable of running an HTML5-
compatible web browser. In the current setup, we use another laboratory desktop
computer because it allows the operator to sit aside from the informant and thereby
not distract him/her. For the informant, there is a reserved free space in the labora-
tory, where he/she can freely and safely move with the HMD on.

Before the start of the experiment, the informant signs a form of informed con-
sent that states the data are collected anonymously and explains basic safety regula-
tions of the VR immersion process. After that, the eye tracker is being calibrated for
the informant. The calibration process is performed with the built-in
HTC Vive Pro Eye software tools (using the standard 9-point pattern). Then, the in-
formant has some free time in the VR scene to get used to the navigation and to
check if he/she feels comfortable. Whenever ready, the informant clicks the button
on the VR controller and the experiment begins. The total time of immersion should
not exceed 15–20 minutes for one person to avoid fatigue.

5.3. Visual Analytics Tools

Beginning the eye-tracking-based experiments, we decided to start with the fol-
lowing two-staged data mining pipeline:

1. Detection of saccades and fixations in the raw data stream obtained from the
eye tracker.

2. Visualizing the scanpath with the radial transition graph.
To perform the first step, we added to SciVi the detection algorithm proposed by

J. Llanes-Jurado et al. [25]. While the reference implementation of J. Llanes-
Jurado et al. is written in Python, to keep all the data mining process in the SciVi cli-
ent, we implemented this algorithm in JavaScript.

The second step is achieved using the improved SciVi::CGraph [14] visualization
module. According to Z. Sharafi et al. [16] and T. Blascheck et al. [17], circular transi-
tion diagrams and radial transition graphs suit well to visualize scanpaths.

A circular transition diagram in a form proposed by T. Blascheck et al. [21] is
shown in Fig. 2a. In this diagram, AOIs are depicted as circle segments. Each seg-
ment is color-coded according to the fixation count inside the corresponding AOI,
and the size of the segment indicates the total dwell time within that AOI. Transitions
between AOIs are represented by arrows, with the thickness displaying the number
of transitions [17]. When the number of AOIs is small, this diagram clearly shows the
distribution of fixation count and fixation time, as well as interchanging saccades.
However, with the increase of the AOIs number, this representation form appears
messy.

Radial transition graphs in a form proposed by T. Blascheck et al. [22] are shown
in Fig. 2b and Fig. 2c. The nodes placed in the circle represent color-coded AOIs,
each one having incoming (white dot) and outgoing (black dot) points the arcs are
connected to. Arcs represent saccades. In the graph in Fig. 2b, sector size represents
total fixation duration for the corresponding AOI, so this graph variant has the same
advantages and drawbacks as the circular transition diagram. In the graph in Fig. 2c,
fixation duration is ignored and all the AOIs are drawn in the same size. This graph
can show multiple AOIs at once, but the data about fixation time are lost.

We propose a SciVi::CGraph-based modification of the radial transition graph,
which is shown in Fig. 2d. This modification aims to combine the advantages of dif-
ferent forms of radial transition graphs and circular transition diagrams, alleviating
their drawbacks. In our graph, nodes represent AOIs, colors correspond to the count

of fixation, and yellow boxes form a histogram that shows fixation durations. In this
way, hundreds of AOIs can be presented, and no data about fixations are trimmed.
Edges represent saccades, whereby the arrow thickness corresponds to the number
of saccades. Each edge contains a timestamp, and a special filter is implemented that
allows defining a time range to show saccades for.

Reusing SciVi::CGraph capabilities, edges and nodes can be filtered according to
their weights (number of saccades and duration of fixations accordingly). To make
sense of wight-based filtering, a re-tracing function is implemented, which recovers
transitive paths after filtering: if the scanpath goes like AOI1 → AOI2 → AOI3 and
AOI2 is filtered out, re-tracing adds a new edge AOI1 → AOI3, and the weight of this
edge is a sum of edges AOI1 → AOI2 and AOI2 → AOI3.

a b

c d

Fig. 2. Different visualizations of scanpath: circular transition diagram (a) (re-
trieved from [17]); radial transition graph depicting fixation durations (b) (retrieved

from [23]); radial transition graph depicting no fixation durations (c) (retrieved
from [23]); our modification of radial transition graph based on SciVi::CGraph ren-

dered in SciVi (d)

Compared to the well-known form of radial transition graph, our modification al-
lows analyzing a relatively large number of AOIs in a single view, which is important

by studying the text reading on the word-scale level. It must be noted, that
SciVi::CGraph already contains a lot of interactive functions (advanced search and
filtering, highlighting on hover, zoom and pan, etc.) [34] to tackle the so-called
“hairball problem” [35] (the problem of visual mess in the picture). These functions
allow analyzing eye tracking data of reading relatively large texts (several sentences
long, see Section 6.3 for details) on the relatively large timescales (working with the
text for several minutes).

6. Setup to Study Reading in Virtual Reality

6.1. Virtual Reality Scene
To study reading in VR, we designed a simple VR scene in the game level editor

of the Unreal Engine. In this scene, there is an open space and a whiteboard model in
the middle. The whiteboard model was taken from the Blendswap 3D model storage
(http://www.blendswap.com/blends/view/85304). The author of this model is the
Blendswap user with the nickname gadiskhatulistiwa, who shared this model under
the terms of the Creative Commons Attribution 3.0 license.

When the experiment begins, the informant’s virtual avatar is placed in front of
the whiteboard, and the whiteboard is empty. The informant can freely move in the
scene’s open space to get used to the VR navigation. Whenever ready to read, the in-
formant clicks the button on the VR controller. The predefined text appears on the
whiteboard and the recording of the informant’s gaze direction starts.

The rendering result of the VR scene is shown in Fig. 3. The text is represented as
a 2D texture generated by SciVi (see Section 6.3 for details) and mapped to the plain
object with a 16:9 aspect ratio. The plain object is placed on top of the whiteboard.
The texture is not mapped to the whiteboard itself to make it easier to hit-test the in-
formant’s gaze ray with the object of interest.

Fig. 3. VR scene rendered by Unreal Engine

http://www.blendswap.com/blends/view/85304

6.2. Visual Analytics Pipeline

The visual analytics pipeline composed as a DFD in the SciVi environment is
shown in Fig. 4.

Fig. 4. SciVi DFD representing the visual analytics pipeline of eye tracking data

Each DFD node represents an individual DM operator and has its ontological de-

scription stored in the SciVi knowledge base. This description contains a list of the
operator’s inputs, outputs, and settings along with the link to the function or library
implementing this operator. The details on how ontologies are utilized to drive the
data processing and visualization can be found in our previous reports [13, 14, 31].

“Text to Picture” operator creates a raster image according to the text provided in
the settings (the settings are not displayed on the DFD nodes because there is indi-
vidual settings panel in the SciVi graphical user interface). “VR Board” operator
transmits the input picture to the VR scene as a texture, where it is mapped to the
plain object on top of the whiteboard. “Segment Words” operator utilizes a computer
vision approach to find bounding rects for the words the input text consists of (see
Section 6.3 for details). “Eye Tracker” operator receives gaze direction data and cor-
responding timestamps from the VR scene. “Detect Eye Movements” operator classi-
fies eye tracking data to saccades and fixations (utilizing the algorithm described in
[25], see Section 6.3 for details). “Build Scanpath” operator combines the eye track-
ing data with the AOIs data to compose a scanpath. This scanpath is then visualized
using a “Circular Graph”.

It must be noted, that the DFD shown in Fig. 4 defines real-time data processing
and displaying, but the “Circular Graph” visualizer allows to save the data being col-
lected and reload them afterwards for offline analysis.

The proposed approach of building analytics pipelines is flexible enough to han-
dle different eye tracking DM cases. If needed, new operators can be easily added by
extending SciVi ontologies, introducing new functionality to solve specific visual ana-
lytics tasks.

6.3. Text Preparation

To study reading in VR, we take texts containing several sentences, with a total
length of no more than 200 words. Currently, we consider texts in Russian, and the
informants are native Russian speakers. The texts contain neutral encyclopedic in-
formation about different phenomena. The example of considered texts is given in
Fig. 3. In this example, a short description of the “shaka sign” (gesture of friendly in-
tent) is given.

The texts are rasterized using HTML5 canvas API to the image of size
1920⨉1080, with Consolas font and justified alignment. On the one hand, this image
is transmitted to the VR scene and used as a texture. On the other hand, this image is
segmented to extract the precise bounding rects for individual words. The segmenta-
tion is based on the horizontal and vertical intensity histograms as proposed in [36].
The horizontal intensity histogram allows to find the bounds of lines, and then, for
each line, the vertical intensity histogram allows to find borders of words. The seg-
mentation of the first line of the text about the shaka sign is shown in Fig. 5. The
words’ bounding rects are highlighted yellow; the dash is excluded because it is not a
word.

Fig. 5. Text segmentation based on the horizontal and vertical

intensity histograms

The gaze ray obtained from the eye tracker is hit-tested with the plain object ren-

dered with the texture containing the text. SRanipal SDK plugin provides a gaze ray
hitpoint with the given object in the global scene coordinates. These data are trans-
mitted to SciVi via WebSocket and received with the “Eye Tracker” operator. In the
“Build Scanpath” SciVi operator, this point is then mapped to the texture space of the
plain object and hit-tested with the word rects to find, which word the informant is
looking at. The hit-testing results are assembled into the scanpath and visualized
with the “Circular Graph” renderer in SciVi.

7. Conclusion
In the present work, we propose the visual analytics pipeline to perform a DM of

eye tracking data in a VR environment. In particular, we discuss the setup to study
the reading process of small texts (up to 200 words) in VR. To the best of our
knowledge, this is a second attempt to apply eye tracking technique for studying the
reading in VR. The first one has been taken by J. Mirault et al. as reported in [20],
but in that work, small sentences are considered. In contrast, we are focusing on the
complete texts.

We propose using the following hardware and software in the eye-tracking-based
experiments:

1. HTC Vive Pro Eye VR HMD with the built-in eye tracker to present the VR
scene to the informant and simultaneously capture the informant’s gaze direction.

2. Unreal Engine to render the immersive VR environment. This engine supports
HTC Vive HMD out of the box; to communicate with the eye tracker, the SRanipal
SDK plugin is used. In the future, we plan to consider integration with the Unity en-
gine as well.

3. SciVi DM platform to preprocess, analyze and store the data obtained from the
eye tracker.

We propose to visualize the scanpaths using a circular graph leveraged by the
SciVi::CGraph module. The general idea is similar to the one proposed by
T. Blascheck et al. in [21, 22]. The distinctive features of our visualization tool are the
following:

1. AOIs are displayed as small nodes on the circle, color-coded according to the
fixation count, and the total fixation time per AOI is displayed as a radial histogram
on top of the nodes.

2. The graph is supplemented with the advanced search and filtering capabilities,
as well as the re-tracing functionality, which in combination allow to focus on the
most significant parts of the gaze tracks being studied.

Both of the above features tackle a hairball problem when a lot of AOIs are being
displayed at the same time. This enables to study the reading process of the text on
the word level (when each word is an individual AOI).

Currently, we use the circular graph to visually analyze the eye tracking data.
This graph allows us to estimate scanpaths in the text, as well as numbers of fixations
and dwell time on each word in the text. In the future, we plan to adopt more differ-
ent metrics, similar to the ones used in [37, 38].

Although the actual eye-tracking-based experiments conducted are rather pre-
liminary, the main result of the reported work is the flexible setup that involves on-
tology-driven DM tools of the SciVi platform for processing and analyzing the eye
tracking data collected in VR. The SciVi DM platform and all its plugins described in
the paper are OpenSource projects available on GitHub: https://github.com/scivi-
tools/. In particular, the ontologies (stored in the ONTOLIS ONT format [39]) de-
scribing the eye-tracking-related operators and renderers can be found under
https://github.com/scivi-tools/scivi.web/tree/master/kb/eye.

Acknowledgments
This study is supported by the research grant No. ID75288744 from Saint Pe-

tersburg State University.

https://github.com/scivi-tools/
https://github.com/scivi-tools/
https://github.com/scivi-tools/scivi.web/tree/master/kb/eye

References
1. Rayner, K., Chace, K.H., Slattery, T.J., Ashby J. Eye Movements as Reflections

of Comprehension Processes in Reading // Scientific Studies of Reading. – 2006. –
Vol. 10. – PP. 241–255. DOI: 10.1207/s1532799xssr1003_3.

2. Piumsomboon, T., Lee, G., Lindeman, R.W., Billinghurst, M. Exploring Natu-
ral Eye-Gaze-Based Interaction for Immersive Virtual Reality // 2017 IEEE Sympo-
sium on 3D User Interfaces (3DUI). – 2017. – PP. 36–39. DOI:
10.1109/3DUI.2017.7893315.

3. Sidorakis, N., Koulieris, G.A., Mania, K. Binocular eye-tracking for the control
of a 3D immersive multimedia user interface // 2015 IEEE 1st Workshop on Every-
day Virtual Reality (WEVR). – 2015. – PP. 15–18. DOI:
10.1109/WEVR.2015.7151689.

4. The Tobii Group [Electronic Resource]. URL: https://www.tobii.com (last ac-
cessed: 07.05.2021).

5. Farnsworth, B. 10 Free Eye Tracking Software Programs [Pros and Cons]
[Electronic Resource] // iMotions – 2021. URL: https://imotions.com/blog/free-
eye-tracking-software/ (last accessed: 07.05.2021).

6. Poole, A., Ball, L.J. Eye Tracking in HCI and Usability Research // Encyclope-
dia of Human Computer Interaction. – 2006. – 9 p. DOI: 10.4018/978-1-59140-562-
7.ch034.

7. Sharafi, Z., Shaffer, T., Sharif, B., Guéhéneuc, Y.-G. Eye-Tracking Metrics in
Software Engineering // 2015 Asia-Pacific Software Engineering Conference
(APSEC). – 2015. – PP. 96–103. DOI: 10.1109/APSEC.2015.53.

8. Clay, V., König, P., König, S.U. Eye Tracking in Virtual Reality // Journal of
Eye Movement Research. – 2019. – Vol. 12, No. 1. DOI: 10.16910/jemr.12.1.3.

9. Lang, B. Eye-tracking is a Game Changer for VR That Goes Far Beyond Fove-
ated Rendering [Electronic Resource]. – 2018. URL:
https://www.roadtovr.com/why-eye-tracking-is-a-game-changer-for-vr-headsets-
virtual-reality/ (last accessed 07.05.2021).

10. Zhang, L.M., Jeng, T., Zhang, R.X. Integration of Virtual Reality, 3-D
Eye-Tracking, and Protocol Analysis for Re-designing Street Space // CAADRIA
2018 - 23rd International Conference on Computer-Aided Architectural Design Re-
search in Asia. – 2018. – Vol. 1. – PP. 431–440.

11. Sonntag, D., Orlosky, J., Weber, M., Gu, Y., Sosnovsky, S., Toyama, T.,
Toosi, E.N. Cognitive Monitoring via Eye Tracking in Virtual Reality Pedestrian Envi-
ronments // Proceedings of the 4th International Symposium on Pervasive Displays.
– 2015. – PP. 269–270. DOI: 10.1145/2757710.2776816.

12. Skulmowski, A., Bunge, A., Kaspar, K., Pipa, G. Forced-Choice Deci-
sion-Making in Modified Trolley Dilemma Situations: a Virtual Reality and Eye
Tracking Study // Frontiers in Behavioral Neuroscience. – 2014. – Vol. 8. DOI:
10.3389/fnbeh.2014.00426.

13. Ryabinin, K., Chuprina, S. Development of Ontology-Based Multiplat-
form Adaptive Scientific Visualization System // Journal of Computational Science.
– 2015. – Vol. 10. – PP. 370–381. DOI: 10.1016/j.jocs.2015.03.003.

14. Ryabinin, K.V., Belousov, K.I., Chuprina, S.I. Novel Circular Graph Ca-
pabilities for Comprehensive Visual Analytics of Interconnected Data in Digital Hu-
manities // Scientific Visualization. – 2020. – Vol. 12, No. 4. – PP. 56–70. DOI:
10.26583/sv.12.4.06.

https://www.tobii.com/
https://imotions.com/blog/free-eye-tracking-software/
https://imotions.com/blog/free-eye-tracking-software/

15. Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H.,
van de Weijer, J. Eye Tracking: A Comprehensive Guide to Methods and Measures. –
2011. – 560 p.

16. Sharafi, Z., Sharif, B., Guéhéneuc, Y.-G., Begel, A., Bednarik, R., Cros-
by, M. A Practical Guide on Conducting Eye Tracking Studies in Software Engineer-
ing // Empirical Software Engineering. – 2020. – Vol. 25. – PP. 3128–3174. DOI:
10.1007/s10664-020-09829-4.

17. Blascheck, T., Kurzhals, K., Raschke, M., Burch, M., Weiskopf, D.,
Ertl, T. State-of-the-Art of Visualization for Eye Tracking Data // EuroVis – STARs.
– 2014. – PP. 63–82. DOI: 10.2312/eurovisstar.20141173.

18. Farnsworth, B. How We Read – What Eye Tracking Can Tell Us [Elec-
tronic Resource] // iMotions. – 2018. URL: https://imotions.com/blog/reading-eye-
tracking/ (last accessed 07.05.2021).

19. Rayner, K. Eye Movements in Reading and Information Processing: 20
Years of Research. // Psychological Bulletin. – 1998. – Vol. 124, No. 3. – PP. 372–
422. DOI: 10.1037/0033-2909.124.3.372.

20. Mirault, J., Guerre-Genton, A., Dufau, S., Grainger, J. Using Virtual
Reality to Study Reading: An Eye-Tracking Investigation of Transposed-Word Effects
// Methods in Psychology. – 2020. – Vol. 3. DOI: 10.1016/j.metip.2020.100029.

21. Blascheck, T., Raschke, M., Ertl, T. Circular Heat Map Transition Dia-
gram // Proceedings of the 2013 Conference on Eye Tracking South Africa. – 2013. –
PP. 58–61. DOI: 10.1145/2509315.2509326.

22. Blascheck, T., Sharif, B. Visually Analyzing Eye Movements on Natural
Language Texts and Source Code Snippets // Proceedings of the 11th ACM Symposi-
um on Eye Tracking Research & Applications. – 2019. - PP. 1–9. DOI:
10.1145/3314111.3319917.

23. Peterson, C.S., Saddler, J.A., Blascheck, T., Sharif, B. Visually Analyzing
Students’ Gaze on C++ Code Snippets // 2019 IEEE/ACM 6th International Work-
shop on Eye Movements in Programming (EMIP). – 2019. – PP. 18–25. DOI:
10.1109/EMIP.2019.00011.

24. McNamara, A., Jain, E. Eye Tracking and Virtual Reality // SIGGRAPH
Asia 2019 Courses. – 2019. – PP. 1–33. DOI: 10.1145/3355047.3359424.

25. Llanes-Jurado, J., Marín-Morales, J., Guixeres, J., Alcañiz, M. Devel-
opment and Calibration of an Eye-Tracking Fixation Identification Algorithm for
Immersive Virtual Reality // Sensors. – 2020. – Vol. 20, No. 17. DOI:
10.3390/s20174956.

26. Stein, N., Niehorster, D.C., Watson, T., Steinicke, F., Rifai, K., Wahl, S.,
Lappe, M. A Comparison of Eye Tracking Latencies among Several Commercial
Head-Mounted Displays // i-Perception. – 2021. – Vol. 12, No. 1. – PP. 1–16. DOI:
10.1177/2041669520983338.

27. Lohr, D.J., Friedman, L., Komogortsev, O.V. Evaluating the Data Quali-
ty of Eye Tracking Signals from a Virtual Reality System: Case Study using SMI’s
Eye-Tracking HTC Vive [Electronic Resource] // arXiv. – 2019. URL:
https://arxiv.org/abs/1912.02083 (last accessed 07.05.2021).

28. Imaoka, Y., Flury, A., de Bruin, E.D. Assessing Saccadic Eye Movements
With Head-Mounted Display Virtual Reality Technology // Frontiers in Psychiatry. –
2020. – Vol. 11. DOI: 10.3389/fpsyt.2020.572938.

29. Reichenberger, J., Pfaller, M., Mühlberger, A. Gaze Behavior in Social
Fear Conditioning: An Eye-Tracking Study in Virtual Reality // Frontiers in Psychol-
ogy. - 2020. – Vol. 11. DOI: 10.3389/fpsyg.2020.00035.

30. Iacobi, J. Software for Analyzing User Experiences in Virtual Reality us-
ing Eye Tracking [Electronic Resource] // KTH Royal Institute of Technology. –
2018. URL: https://kth.diva-portal.org/smash/get/diva2:1231972/FULLTEXT01.pdf
(last accessed 07.05.2021).

31. Ryabinin, K., Chuprina, S. High-Level Toolset For Comprehensive Vis-
ual Data Analysis and Model Validation // Procedia Computer Science. – 2017. –
Vol. 108. – PP. 2090–2099. DOI: 10.1016/j.procs.2017.05.050.

32. Naik, A., Samant, L. Correlation Review of Classification Algorithm Us-
ing Data Mining Tool: WEKA, Rapidminer, Tanagra, Orange and Knime // Procedia
Computer Science. – 2016. – Vol. 85. – PP. 662–668. DOI:
10.1016/j.procs.2016.05.251.

33. Taleski, A. Speaker’s Behavior in Virtual Reality (Methodology of the
Experiment and Description of Preliminary Results) // Perm University Herald. Rus-
sian and Foreign Philology. – 2020. – Vol. 12, Iss. 4. – PP. 54–67. DOI:
10.17072/2073-6681-2020-4-54-67.

34. Ryabinin, K.V., Belousov, K.I., Chuprina, S.I., Shchebetenko, S.A.,
Permyakov, S.S. Visual Analytics Tools for Systematic Exploration of Multi-
Parameter Data of Social Web-Based Service Users // Scientific Visualization. –
2018. – Vol. 10, No. 4. – PP. 82–99. DOI: 10.26583/sv.10.4.07.

35. Williams, D. Graph visualization: fixing data hairballs [Electronic Re-
source] // Cambridge Intelligence. – 2019. URL: https://cambridge-
intelligence.com/how-to-fix-hairballs/ (last accessed 07.05.2021).

36. Druki, A.A. Application of Convolutional Neural Networks for Extrac-
tion and Recognition of Car Number Plates on Images with Complex Background //
Bulletin of the Tomsk Polytechnic University. – 2014. – Vol. 324, No. 5. – PP. 85–92.

37. Petrova, T.E., Riekhakaynen, E.I., Bratash, V.S. An Eye-Tracking Study
of Sketch Processing: Evidence From Russian // Frontiers in Psychology. – 2020. –
Vol. 11. DOI: 10.3389/fpsyg.2020.00297.

38. Zubov, V.I., Petrova, T.E. Lexically or Grammatically Adapted Texts:
What Is Easier to Process for Secondary School Children? // Procedia Computer Sci-
ence. – 2020. – Vol. 176. - PP. 2117–2124. DOI: 10.1016/j.procs.2020.09.248.

39. Chuprina, S., Nasraoui, O. Using Ontology-based Adaptable Scientific
Visualization and Cognitive Graphics Tools to Transform Traditional Information
Systems into Intelligent Systems // Scientific Visualization. – 2016. – Vol. 8, No. 3. –
PP. 23–44.

https://cambridge-intelligence.com/how-to-fix-hairballs/
https://cambridge-intelligence.com/how-to-fix-hairballs/

